HONPAS软件相关论文
综述
[1] 合肥线性标度从头模拟软件包HONPAS总体介绍 (HONPAS 引用)
Xinming Qin, Honghui Shang, Hongjun Xiang, Zhenyu Li, Jinlong Yang*, HONPAS : A linear scaling open-source solution for large system simulations, Int. J. Quantum Chem. 115, 647 (2015) .
[2] 数值原子轨道基组下的线性标度电子结构计算方法综述(包含HONPAS早期版本综述)
Honghui Shang, Hongjun Xiang, Zhenyu Li, Jinlong Yang*, Linear scaling electronic structure calculations with numerical atomic basis set, Int. Rev. Phys. Chem. 29, 665 (2010).
线性标度/低标度杂化泛函计算
[3] 数值原子轨道基组下精确交换的直接计算
Honghui Shang, Zhenyu Li, Jinlong Yang*, Implementation of exact exchange with numerical atomic orbitals, J. Phys. Chem. A 2, 114 (2010).
[4] 数值原子轨道基组下实现周期体系杂化泛函线性标度计算:基函数拟合与积分预筛选
Honghui Shang, Zhenyu Li, Jinlong Yang*, Implementation of screened hybrid density functional for periodic systems with numerical atomic orbitals: Basis function fitting and integral screening, J. Chem. Phys. 135, 034110 (2011).
[5] 静态分布算法实现杂化泛函并行计算
Xinming Qin, Honghui Shang*, Lei Xu, Wei Hu, Jinlong Yang, Shigang Li, Yunquan Zhang, The static parallel distribution algorithms for hybrid density-functional calculations in HONPAS package, Int. J. High Perform. Comput. Appl. 34, 159 (2020).
[6] 两级Master-Worker动态任务分布实现杂化泛函大规模并行计算
Honghui Shang, Lei Xu, Baodong Wu, Xinming Qin, Yunquan Zhang, Jinlong Yang*, The dynamic parallel distribution algorithm for hybrid density-functional calculations in HONPAS package, Comput. Phys. Comm. 254, 107204 (2020).
[7] 插值可分离密度拟合近似加速数值原子轨道下的 Hartree-Fock 交换计算
Xinming Qin, Jie Liu, Wei Hu*, Jinlong Yang*, Interpolative separable density fitting decomposition for accelerating Hartree–Fock exchange calculations within numerical atomic orbitals, J. Phys. Chem. A 124, 5664 (2020).
[8] 结合K-Means聚类算法和插值可分密度拟合近似加速数值原子轨道下杂化泛函计算
Xinming Qin, Jielan Li, Wei Hu*, Jinlong Yang*, Machine learning k-means clustering algorithm for interpolative separable density fitting to accelerate hybrid functional calculations with numerical atomic orbitals, J. Phys. Chem. A 124, 10066 (2020).
密度矩阵纯化方法
[9] 自旋非限制线性标度电子结构理论及其在磁性碳掺杂氮化硼纳米管中的应用
Hongjun Xiang, Wanzhen Liang, Jinlong Yang*, Jianguo Hou, Qingshi Zhu, Spin-unrestricted linear-scaling electronic structure theory and its application to magnetic carbon-doped boron nitride nanotubes, J. Chem. Phys. 123, 124105 (2005).
[10] 数值原子轨道基组下密度矩阵纯化线性标度并行计算
Zhaolong Luo, Xinming Qin*, Lingyun Wan, Wei Hu*, Jinlong Yang, Parallel implementation of large-scale linear scaling density functional theory calculations with numerical atomic orbitals in HONPAS, Front. Chem. 8, 932 (2020).
自洽后线性标度计算
[11] 数值原子轨道基组下边界态和掺杂半导体的线性标度计算
Hongjun Xiang, Jinlong Yang*, Jianguo Hou, Qingshi Zhu, Linear scaling calculation of band edge states and doped semiconductors, J. Chem. Phys. 126, 244707 (2007).
[12] 数值原子轨道基组下最大局域化Wannier函数的线性标度计算
Hongjun Xiang, Zhenyu Li, Wanzhen Liang, Jinlong Yang*, Jianguo Hou, Qingshi Zhu, Linear scaling calculation of maximally localized Wannier functions with atomic basis set, J. Chem. Phys. 124, 234108 (2006).
线性标度密度矩阵微扰理论计算
[13] 采用线性标度密度矩阵微扰理论(DMPT)处理固体中的电场
Hongjun Xiang, Jinlong Yang*, Jianguo Hou, Qingshi Zhu, Linear-scaling density matrix perturbation treatment of electric fields in solids, Phys. Rev. Lett. 97, 266042 (2006).
低标度Post-Hartree-Fock方法
[14] 数值原子轨道基组下周期体系的低标度Laplace-MP2计算
Honghui Shang*, Jinlong Yang*, Implementation of Laplace transformed MP2 for periodic systems with numerical atomic orbitals, Front. Chem. 8, 956 (2020).
HONPAS应用
[15] 石墨烯量子点室温磁性
Wei Hu, Yi Huang, Xinming Qin, Lin Lin*, Erjun Kan, Xingxing Li, Chao Yang*, Jinlong Yang*,Room-temperature magnetism and tunable energy gaps in edge-passivated zigzag graphene quantum dots, npj. 2D. Mater. Appl. 3, 17 (2019).
[16] 基于三角形石墨烯量子点的二维磁性半导体的理论设计
Xiaofeng Liu, Xinming Qin, Xiangyang Li, Zijing Ding, Xingxing Li, Wei Hu*,and Jinlong Yang*,Designing Two-Dimensional Versatile Room-Temperature Ferromagnets via Assembling Large-Scale Magnetic Quantum Dots,Nano Lett. 21, 22(2021).
[17] 石墨烯量子点中的混合磁性边界态
Junyao Li, Xiaofeng Liu, Lingyun Wan, Xinming Qin, Wei Hu∗,and Jinlong Yang∗,Mixed magnetic edge states in graphene quantum dots,Multifunct. Mater. 5 014001(2022).